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Abstract

In an earlier paper [I1 we characterized the class of facets of the set

covering polytope defined by inequalities with coefficients equal to 0, 1 or

S2. -iT this paper we connects/that characterization to the theory of facet

lifting. In particular, we-introduc~ a family of lower dimensional polytopes

and associated inequalities having only three nonzero coefficients, whose

lifting yields all the valid inequalities in the above class, with the lifting

coefficients given by closed form expressions.
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1. Introduction

A great variety of practical optimization problems can be formulated as

set covering problems, i.e. integer programs of the form

(SC) min {cx Ax k 1, x e {0,i}n}

where A is an mxn 0-1 matrix and 1 is the m-vector of l's. Attempts at

understanding the structure of this class of problems lead to the study of the

set covering polytope

P (A) := conv{x c foI}n I Ax ? 1}

and its relation to the relaxed polytope

[ .,.P(A) := {x e R IAx k 1, 0 A x -; 1).

In a first paper on the facial structure of P (A) (1], we described the

0 facets of P (A) defined by inequalities of the form ax 2, with a c f0,1,2).- ' "I . "

More generally, we characterized this class of inequalities as obtainable by a

' particularly simple version of Chvatal's procedure [31 and established a

connection between facet defining inequalities and full circulant submatrices

Ck-1 of A with k a 3.

In this paper, we connect the results of [1] to the theory of facet

lifting [2, 4-71. While in [1] our analysis centered on the role of certain
;'

subsets of the rows of A, here our focus is on subsets of columns of A. In

- particular, we start with a triplet of columns, plus some extra columns needed

S- to make the resulting problem feasible, and consider a class of valid

inequalities for the set covering polytope in this lower dimensional space

(Section 2). We then lift the inequality into Rn by a specialized procedure

that gives closed form expressions for the values of the coefficients

(Section 3). Finally, we give necessary and sufficient conditions for a given

inequality ax a 2 to be obtainable by this procedure, and describe a modified

-i lifting procedure, using a subset of the rows of A, that yields those

inequalities not obtainable by the first procedure.
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2. Inequalities from Circulants of Order 3

We first give some preliminary results on inequalities induced by

submatrices of the form

Cm 2 1 i01

Let N and M denote the column and row index sets, respectively of A. We

note that PI (A) is full dimensional if and only if every row of A has at least

two l's. More generally, the dimension of PI (A) is n-k, where k is the

cardinality of a maximal set of rows that have a single 1, no two of which

have their l's in the same column.

0

Theore 2.1. LetN 9N, jNl = 3, N = N N, and

M = (i c M 0, Vj c. o:{ I a N).

The inequality

(2.1) (x. : j N) c 2

is valid for P (A) if and only if every column of A"i contains a zero.
0

A valid inequality (2.1) is minimal if and only if Pi does not have a
0

.zero row or two unequal rows with a single 1 in each.

V.N A valid inequality (2.1) for P (A) cuts off a vertex of P(A) if and only

if every row of Ami contains at most one zero.
M 0

J, Finally, a valid inequality (2.1) defines a facet of P (A) if and only if

every row of ANI contains at most one 0, and A\ does not contain a 3xn
0 0

submatrix of the form (13, E) (up to row permutations) where I is the3 3
identity matrix with columns indexed by N and E has a single column of 1 's

with all other entries equal to O.

.' Proof: If there exists a column j of A 1 which has no 0, then x

* 0
defined by x =1 if j CN u {jo}, x = 0 otherwise, satisfies Ax a l and

Nviolates (2.1), hence (2.1) is not valid. If every column of A i has a zero

* 2
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then it takes at least two columns to cover Mo, hence (2.1) is valid.

If A N contains a zero row or two unequal rows with a single 1 in each,
M

say a = 1, a = 1, then (2.1) is not minimal, since in the first case

every inequality is trivially valid (P (A) is empty), and in the second case

adding up rows i and iz gives x* + x a 2, which strictly dominates (2.1).

Conversely, suppose there is no zero row or two unequal rows with a

single 1 in AN1. Then reducing any of the coefficients of (2.1) invalidates
M

A 0

the inequaiity. Indeed, if the coefficient of some x j e N is replaced by

a < i, each of the inequalities x. + x. + ax. a 2 and x. + ax + x. 2 cuts
I 2 3 1 z 3

off the solution x defined by x = 1 for j e N U {j 3}, x - 0 otherwise:

and the inequality ax + x + x a 2 cuts off x defined by xi =

j N u N j j . On the other hand, if the coefficient of some x , j N ,
*,

is replaced by f < 0, the inequality x + x + x + Ox. a 2 cuts off both
1 2 3 1

x and x.

Next, let (2.1) be a minimal valid inequality for P I(A). If every row of

A j 'contains at most one 0, then x defined by x = 1/2, j N x 1,

0

j e N is a vertex of P(A) cut off by (2.1). If, on the other hand, A 1 has a
2 M

0

row with two 0's, then the corresponding inequality of Ax a 1 is of the form
N

x. 1 for some j e N and since column j of A i has at least one 0, there
11 Mx0

also exists an inequality of Ax a 1 of the form x + x 2 1, whereZ J3

,jz,j3} = N . But then (2.1) is the sum of these two inequalities and
1 2 3 1

%:. cannot cut off any point of P(A).

From this last statement it also follows that if A i has a row with more
M

* 0
1; than one 0, then (2.1) cannot be facet defining for P I(A). Also, if

A contains a submatrix of the form (I, E) and k is the index of the column
4' M\M3~~ 0*

of all l's of E, then every cover x satisfying (2.1) with equality also

satisfies x ; 1 hence (2.1) does not define a facet of P (A).
k

Conversely, suppose AN1 has at most one 0 in every row and AM\ M  contains

0 0

* 3
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no submatrix of the form (131 E), with the columns of 13 indexed by N If

AM\ M  contains any rows with a single 1, and p is the maximum number of such
0

rows whose l's occur in distinct columns, then the dimension of PI (A) is

d = n - p. We will show that (2.1) is facet defining by exhibiting d affinely

independent points of P,(A) that satisfy (2.1) with equality.

For k e Nz, define

, T(k) := i E M \ MO a, = 0, Vi c N \ {k} }

and

T(k)an i e M M0  a = 0, Vi e N z \ (k}, Z(a. j E NI) 1 1.T 1) .- 2 o i i

Clearly, the number of k e N such that T(k) 0 is p = n - d. Let
2 0

e-- ., 1), e e Rn , and let e. be the j-th unit vector in R . For every

k c N such that if k e Nz, T(k) = 0, define the n-vector

{ e-e kEN

e ek N T(k) =0 ,
ej(k)

where j(k) c N is chosen such that, if {j ,j} = N \ j(k), a + a
1i z

for all i E T(k) (if T(k) = 0, j(k) is chosen arbitrarily). The existence

of such j(k) follows from the fact that A does not contain a submatrix of
0

the form (13, E) with 13 indexed by N

The d vectors x are in P (A), satisfy (2.1) with equality, and are

-- affinely independent; hence (2.1) defines a facet of P (A).I1

Corollary 2.2 If (2.1) is a minimal valid inequality for P (A) and is
N

not te sum of two inequalities of A' k 1, then AN1 contains a C1.

".'- 0 0

Proof. Let (2.1) be a minimal valid inequality for P (A). If (2.1) is

not the sum of two inequalities, then every row of A I has at least two I's;
M
0

also, every column of AM1 has a 0. Therefore, AMI contains a C.IM.. M 3-1
0 0

We illustrate Theorem 2.1 on the following

Example 2.1 Let A be the matrix

* 4



01100

1 000~01001
0 O01 10

i10001

SettingiN {1,2,3} and N 2 {4,5}, we have M = {1,2,3} and every

column of A i contains a zero. Thus x I+ x + x 2 is a valid inequality for
0

P (A). It is also minimal, since every row of AN i does not contain a zero row
0

or a row with a single 1; and it cuts off the vertex x = (1/2, ... , 1/2%/ of

P(A). It contains C in its first three rows and columns. However it is not
3

facet defining, since rows 6, 4, 7 form the matrix (13, E), with l's in column

5; hence x 1 for every x e P (A) such that xI + x + x = 2. On the other

hand, if any 0 in rows 4, 6, 7, is replaced by a 1, then (2.1) is facet

defining for P (A).11

3. The Family of Sequentially Lifted Inequalities

We now discuss the lifting of the inequalities introduced in Theorem 2.1.

Theorem 3.1 Let N,, N C-N N nN N 3, and let (2.1) be a1 2 1 Z 1

- minimal valid inequality for PI (A"IUNZ) 0.

Let .j, '''' j be an arbitrary ordering of N = N \ (N u N) where

q I I and define a. , .. ,recursively as follows.-

For 1, ... , q, denote

:= j, .... . },with J 0;

J : {jC J i = t}, t = 0, 1, 2.
S t

"c.Mi I a =0, Vj c N u J }.
aJ.>C*) := {i 2 0

and define the conditions

(cl) a = I for alI i e AJ ;
* 0

and

* 5



SI

' (c2) there exists k E V u J I such that

a + a Z 1 for all i E MJ "
ik i0

Set

S 2 if (cl) holds

aX =t 1 if (c2) holds but (cl) does not

0 otherwise

Then

(3.2) E(x. j e N) + E(c x. t = 1, ... , q)
.1 1 •

is a minimal valid inequality for PI (A). Further, if (2.1) cuts off a

fractional vertex of AANiuNz), then (3.2) cuts off a vertex of P(A).

Finally if (2.1) defines a facet of P I(A UNz), then (3.2) defines a

* facet of P (A).

Before proving this theorem, we illustrate it.

Example 3.1. Let A be the matrix

111000001

10 01001011
101000110
i110000010
0001111 01
0i 00 1 11001

~011000110

Let N {1,2,3}, Nz  {4,5}. Then M = {1,2,3,4,7}, and xI + x 2
Let NI UNz

*" x 2 is a minimal valid inequality for P (AYiWZ), that cuts off the•3 1'

fractional vertex x= , Z 0, 1 . Further, P,(A N UN) is full

dimensional and thus x 1 + x 2  - X3 z 2 is facet defining. To lift this

inequality, consider the ordering of N given by (6,7,8,9).• :3

For j, = 6, J1  0 and M(J) = Mo. Since neither (cl) nor (c2) holds, we

seta =a 0.
j 6

For jz = 7, _J ( 6}, 1 0, and M(J2 ) J {1,3,4,7). Condition (cl) does@ 0 ' 1 0

not hold but (c2) holds since a + a 1 1 for all i c M(J 0 ). Thus we set44 i 2 i7

* 6.4.



For j 8, Jo {6}, j3 {7} and M(J0 ) = .1,3,4,71. Again, ici) does

not hold but (c2) holds since a +aie I 1 for all i c M(J3 ), and so we set

0 3 = = 1.

Finally, for 9, j4 = {6}, J4 = {7,8}, M(J4 ) = {1,3,4,7'; 1 c1P does
4 0 10

not hold but (c2) holds, since a + a I for all i M M(J4). Thus we set
' iZ 0

1, and the lifted inequality is
4

(3.3) x1 +x 2 + x + x + x + x 9 2(33)xl z 3 7 8

According to the Theorem, (3.3) is valid and minimal for P (A). Also,

2 2 2
(3.3) cuts off a fractional vertex of P(A), for instance x - 3' 3, 3, 0, 1,

0, 0, 0, 0 and it defines a facet of P I(A).

On the other hand, if we order N as {6,7,9,8}, then x = 2 and a 6 0,

i.e. the lifted inequality is

X + x2 + x + X7 + 2x9 k 2,

which is also minimal and facet defining for PI (A).

We will prove Theorem 3.1 by the technique known as sequential lifting'

with complementing (see [2, 6])

We start by complemeiitin, the variables x, j 6 N u Nz, i.e. by restating

the problem in terms of a new set of variables y i C N, defined by{ -x if j e N u N

(3.4) yj = i
=" if j N

1 3

Clearly, x : {0,l} satisfies Ax I 1 if and only if y e {0,1) n satisfies

(3.5) E(a y j N 1u N ) - E(a.. y j e N3

.(a.: j e N u N )-I Vi C M
ii1 z

and x c {O,l n satisfies (3.2) if and only if y e L0,i} satisfies

(3.6) j c N) + E(Py j N) 1 ( = IN I - 2),:3. 1 3

where . --x, j c N . Define
]3 : 3

7



Cn
P C: convyy C (O0l}' y satisfies (3.5)

We nots- *.e obvious facts that

. C
(2 x c P (A) if and only if y E P.(A) for y defined by (3. 1:

C
:ii") dim PA) = dim P IA).

(iii) (3.2) is a (minimal) valid inequality for P (A) if and only if

(3.6) is a (maximal) valid inequality for PC (A);

(iv) (3.2) defines a facet of P (A) if and only if (3.6) defines a facet

of PC(A).

Since properties (i) - (iv) also hold for arbitrary submatrices of A, we can

prove that (3.2) has the properties claimed in Theorem 3.1 with respect to

P (A) by showing that (3.6) has those properties with respect to Pc(A).

* Lemma 3.-2 Let

'3.7) E(y. j N) 1

be a maximal valid inequality for P C(A N UNz) 0. Let j, .. ,j be
I " q

any ordering of N(with q = IN I). Tben,3 3

(3.8) E(y : j N) + Z(P. y. : = 1, ... , q) 1
j 

1e '.

is a maximal valid inequality for PI (A), with the coefficients defined

recursively by I - z. , where

S.,~t

(IP) E(ay j Nu N) - E(a y : k: 1, t-1)
1. 2l Ij I

k k_,. ; a . : N U N,¢ If )  + a . , i M 4

y.E o, 1, E .

yI {OL, j N

Further, if (3. 7) cuts off a vertex of P C(AN"UNZ) then (3.8) cuts off a

vertex of P C(A). Finally if (3. 7) defines a facet of P C(AIUN?), then (3.8)

defines a facet of PC (A).

S* pC
Proof. If (3.8) is not valid, it cuts off some y C P (A). Let be the

largest integer such that y 1. Then

* 8
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* *

, y j c N ) - ( * y : k = I, .. , -1; i I
I k J k

which implies ) > 1 - z contradicting the definition of

If (3.8) is valid but not maximal, then at least one of its coefficients

, j E N , is not maximal, i.e. can be increased without cutting off any

V point of PI(A). Let Z be the smallest integer such that is not maximal,

CI
Im and let y be the solution to (IP) , that yielded the value z . Then

(y, 1, 0, .... 0) E PC (A), where 1 is the component indexed by jy, and the 0's

are those indexed by ... Since P. is not maximal,

:~y j c N ) + E(P y k : 1, ..., t-l) + I < 1

or < < 1 - z , again contrary to the definition of .

C
Thus (3.8) is a maximal valid inequality for P (A). If (3.71, cuts off a

C NNC
* vertex y of P (ANiu z), (3.8) obviously cuts off the vertex of P (A) obtained

from y by adding 0 components for all jf, Z = 1, .... q.

Now suppose (3.7) defines a facet of PC (A Ni UNz), and denote by Aq the

matrix A whose columns are indexed by N u N U {jj ..., }. We use induction
1 .2 1q

K. or q. Since for q = 0 we have P C(A') = PC(A N Uz), assume that (3.8) defines

a facet of P C(Aq) for q = 0, 1, k, and let q = k + 1 a 1. Dnote by d

the dimension of PC(Ak), and assume first that the dimension of PC (Ak+1 isI I

i C k)d + 1. Then there are d affinely independent points y C P (A) i=l, ... d,

each having I := IN1u N.1 + k components, that satisfy (3.8) (for q k) with

* equality. Adding to each y' a (y + 1)-st component equal to 0 and defining

A the additional (I + l)-vector y := (0, ..., 0, 1), we obtain d + I affinely

independent points yE PC(;hk) that satisfy (3.8) (for q = k - 1) with

* equality.

Assume now that the dimension of PC(Ak l) is d + r for some integer r,

2 : r f I + 1 - d, i.e. that the addition of column j increases the rank of

* the system by more than one. Then the system defining P (Ak) has r- 1

inequalities of the form y 0 0, t e N2, p 1, ... , r - 1, with all t
9 
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distinct, such that the corresponding inequalities of PC A+' are y- y

:5. 0, p = 1, ... , r - 1. To the set of d + 1 affinely independent

- 1)-vectors y constructed abve we then add r - 1 new (' + 1)-vectors of

the form y - (0, ..... 0, 1, 0, ..., 0, 1), p 1, ..., r - 1, with the

first I in position t and the second in position j " Since the first d - 1
p k+1

vectors y' all had yt z 0 for p = 1 ... , r - 1 (otherwise they would not have
t

been in P (Ak) the addition of each y... r - I increases the

rank of the resulting system by one; and thus we obtain a system of d + r
i i C k+1,'

affinely independent points y C P (A each of which satisfies (3.8) (for

q = k + 1) with equality.

This completes the induction and proves that (3.8) defines a facet of

From Lemma 3.2 it would seem that calculating the coefficients of a

lifted inequality requires the solution of an integer program in IN1u Nz2. +

Z - 1 variables for each coefficient P , a task that is NP-complete. This is

indeed the case when the problem at hand is an integer program with no special

structure. In the case of the family of inequalities (3.2) for the

set covering polytope, however, the structure of the problem allows one to

solve this sequence of integer programs by a closed form expression, as we

shall presently show. But first we need two more auxiliary results.

Lemma 3. 3. For any ordering of N , we have I Az 3 and0 e >-2

3 1.

for all j C N.
3

Proof. Since (3.7) is a maximal valid inequality for PC (ANiu z), the

integer program (IP)t always has a feasible solution of the form y = I for

some k c N1, yi = 0, i k. Thus z I and hence 50, .= J1 ....

On the other hand, since j < 0 for all j e N3 , 3 is the unconstrained maximum

of z for all t € {i ...e , q}; hence z 3 and -2,

10



Leia 3.4. Let (3. 7) be a maximal valid inequality for (ANIZ., and

let J . j... be an arbitrary ordering of N . Suppose 0, has been
3 q :3

determined for j j... and let

J = J1' P' ... P ('J  0 if t = I,

J {(j r J ' - t), t = 0, 1, 2.

Then the value of z in (IP)_ is the same as in

Z. max E(y :J N)- (y. j - J

s.t.

.3(SIP>)t E (a 7.y j c N) - (a. jy 6 J )
11 1j I2

E (a.. j e N) - 1 + a. , Vi e M(J )
1i I

E (y j E:J

Y 0 1 1 1

Proof. Since the objective function coefficient of y is 0 for

j c N u 3 , while the constraint coefficients of y. are all nonnegative for2 ,=0 orj .2an j

j C N and all nonpositive for j e we can sety=0forj eN andy
2 0J2 1

for j E J without affecting the value of z. This amounts to removing the

variables y, j E N2u j , from (IP)t, and adding Z(a : j C J 0 ) to the

right-hand side of the i-th constraint for i e M. Now for M(JQ ",
0

E(a : j e N u J ) 0 by definition, and so the right hand side coefficien '
j 2 0

is E(a : j E N ) - 1 + a , as claimed for (SIP) t.

Further, these value assignments for y,, j C N u J make the constraints
.22 0

i E M \ M(J ) redundant, since
0

j jy j -I a *. E J

•E(a y : j C N ) - E(a y :j E J

7a j r N)
3.2

t
, E(a.. :j N u N u J - 1 + a

where the last inequality follows from the fact that

1



c(a : N u J ) 1
0

for i E M \ M(J) (by definition of M(J))

Next, the maximum amount by which E(y: j e N ) could possibly be

increased by setting y 1 for some or all j J u J is 2 (from I to 3)

hence we can set y 0 for all j c J (as f. = -2), and we can impose the

constraint Z(Y . J ) I (as J 3 -1 for all j e J ) without affecting

the value of z

-, Proof of Theorem 3.1. From Lemma 3.2, Theorem 3.1 is true if and only if

X. -. , t = 1, ... , q, where the ax are defined by (3.1) and the 0 by

'if. it it It 2

(SIP)'t.

Note that the last inequality of (SIP), can be written as E(y* Jl)
0 1 0 1

0 or 1. Thus z max{z O  z ) where z , z, denote the maximum in (SIP)c

when E(y. j e J ) = 0 and 1, respectively.

Consider the conditions of Theorem 3.1 defining a . If (cl) holds, then

for every i 6 M(J ) the right hand side of the corresponding constraint of

(SIP)z is equal to E(a. : j N), hence z = zj= 3 (and E(y j E J
t Aj t it~

0). Conversely, if z, =3, i.e., y = 1 Vj e N the right hand side of

% every inequality i 6 M(J ) must be equal to E(a : j e N1 ) hence (cl) must

hold. Thus z 3 if and only if (cl) holds.

* If (cl) does not hold, then z A 2. Now suppose (c2) holds, i.e. there

existskcN uJ suchthata + a I for all i c M(J ). IfkeN
SI sik lit 0 1

then y defined by y = 1, j C N \{k}, yj 0 otherwise is feasible in (SIP)f,

. since
"- '. E a .y : j N )-E(a yj C J- E (a. : N (}

ij1' i 1 ijy 1 1

A E(a j C N1 ) - 1 + a'C -' ij 1i j

If, on the other hand, k c J, then y defined by yj = 1, j c N U {k} ,

yj 0 otherwise, is feasible since

0 12



ja. y.j N E - y j E J (a .j e N -a

Z(a j N -1 + a

Further, for both y and y, z = 2.

Finally, assume that neither (cl) nor (c2) holds. Then for each

k e N u J there exists some i e M(J ) such that a a 0. We consider
11 0 i k

two cases.

Case 1: E(y j E J ) 0. Since z 5 2, at most two of the variables

Y 'j r: N1, can be equal to 1 in any solution. Let yk 0, and let

i(k) e M(J ) be such that a = 0. then

y:a : j e N \{k}) s E(a i j e N \fk}) - 1,
i: ~ikjj1(k'j I

i.e. at most one of the two variables y., j e N - (k}, can be equal to 1.

0 Hence z 1.

Case 2: E(y: j e J ) 1. Let Yk 1, y. 0, j C J {k), and

let i(k) E M(J ) be such that a i(k)k = a (k)j= 0. Then

'(ai Y : j c N) - E(a y j  C J (a y j e ) - a
,i(k)j I i(k)j j i(k)j 1 i(k)k

or, since a i(k)k = ,

I i i~k k
%E(a i(k)j y j  j e N 1 )  E (ai(k) j :j e N 1 ) -1

which means that at most two of the variables yj I N can be equal to 1 in

any solution to (SIP)t. This, together with yk = 1, implies z I.

We have shown that 1 = 1 - z = -2 if (cl) holds, J3. -1 if not (cl)

but (c2) holds, and 13. 0 if neither (cl) nor (c2) is satisfied. Thus 1

-C 1, .... q for aj* defined by (3.1).1

. -9 Theorem 3.1 gives a sufficient condition for an inequality (3.2) to

define a facet of P (A). The condition, however, is not necessary. This is

illustrated by the following.

'V Example 3.2. Let A be the matrix

* 13



S
0h 1 u10 ui01u 1
101000010
i10000011
100010011
010010110
001010110
110101010

and let N = {1,2,3}, N2 = {4,5,6}. Then + x+ x3  2 defines a minimal

1 0 1 0 03

~~inequality for P1 (A
( 1 '.. 6 }), but not a facet, since A ( 1 ' ' '' 6 } contains

(I3, E) as a submatrix. However, for the ordering (7, 8, 9) of N3 i h

1 1 0 0 0 07 0 1 +1

lifting procedure, we obtain the inequality ++ + x 8 x9  2
n which defines a facet of Pm(A).,a

A given inequality (2.1) can give rise via lifting to many different

* inequalities (3.2), depending on the sequence in which the coefficients cx are
I

calculated. The earlier in the sequence a given coefficient is calculated,

the lower its value (in the weak sense). To be precise, the coefficients ax

have the following property.

Corollary 3.5. Let {J" "' j be an arbitrary ordering of N, and
I q

for

any t, let (k) be the value of a. in the inequality (3.2) associated with

the ordering obtained from [j " j} by moving J to the kh position.

Then

0 (k) (k+I)
, k =li, ... , q-i.

Proof. Consider the problem (SIP)t used to calculate the value of ai(l (k) (k~l)

and a it and denote by zi and z the corresponding values of z . Then

clearly the solution that yields the value )f z k ) is also feasible to the

(Icti) (kc) (k41) (k) (ktl)
problem whose optimum is z i ; hence zk z t , i.e., a i ax .fl

Since the coefficients of (3.2) vary in size between 0 and 2, the

question arises as to whether the range of variation of a given coefficient a

* 14

111111 ! 11 F



I

as a result of changes in its position in the sequence a , ... , a can beji J,I q

narrowed down to less than 2, as in the case of a knapsack polytope, where

this range is 1. The answer to this question is negative, as shown by the

following example.

Example 3.4. Consider the matrix

(110101
A 10101
0 01101

~11001
00110

Swith N = {l,2,3}, N2 = 0. The lifting procedure yields the two inequalitieswtN1 ,

x + x + x + O.x + 2x k 2

1 2 3 4 5

x + x + x + 2x + O.x k 21 2l 3 4 5
e4

for the sequences 4, 5 and 5, 4, respectively, and each of the variables x

x have coefficients that differ by 2 in the two inequalities.11

For any subset S c M, P (A) _ P I(As) and thus any inequality valid for

P (As) is also valid for P (A). Therefore we have

Corollary 3.6. Let S be a proper subset of M, IS a 3, and let

(3.9) E(x j N) + E( x j N) N 2
j i 1 3

be a lifted inequality obtained by applying Theorem 3.1 with M(J ) replaced

by

s(Je := {i S a. 0, Vj e T u J
0 )2 0

in the conditions (cl) and (c2) defining a. Then (3.9) is a valid

ii
inequality for P I (A.).

We will use the device of working with a subset of the rows of A to prove

the key result of Section 4. Here we illustrate one of the situations when

this device is useful.

Example 3.3. Consider the matrix

15



0001111)

A- 0 11 11
i11010
ii1101

Let N1 = fl,2,3}, N2 = 0. The inequality

x1 +x 2 +x 3 2

is valid but not minimal for P (A 1 Nz), since P I(A 1 Nz) = 0 and any

inequality is valid for an empty polytope. However, this is a minimal valid

inequality for P (Amitjz) with S := {2,3,4}, and when lifted via the procedure

of Theorem 3.1 (with A replaced by As) it yields the inequality

x + x + x + 2x + x + x + x 2,1% 2 3 4 5 6 7 '

which is minimal and facet defining for both P (A ) and P (A).II
I SI

Naturally, when P I(A N UN z) 0 0, the inequality (3.2) obtained by applying

the lifting procedure to A dominates any inequality obtained by applying the

same procedure to A for some S c M.
S

Note that although the lifting procedure in principle involves solving an

integer program to calculate the value of each coefficient, Theorem 1 gives a

" closed form expression for the values of the coefficients,which makes it

possible to calculate them efficiently. The work involved in calculating all

the coefficients of an inequality (3.2) is O(um2 ), where m = IMI and n = INI.

Next we identify an important subclass of the class (3.2) of inequalities,

whose members are independent of the sequence in which their coefficients are

calculated, and can be obtained by work of 0(mn).

For any triplet Nc N and any N c N \ N define, as before, M"
S z o

Is fi c M I a = 0, Vj e N } and N3 := N \ (N u N ). We will say that Nz is

N -maximal if for each j e N3, there exists k(j) c N such that for all
1 3 1

i E Mo, a = 0 implies aik(j) 1 1. N1-maximal sets Nz with respect to a

• given triplet N need not be unique.

Corollary 3. 7. Let N, k = 1, 2, 3, be as in Theorem 3.1, let (2. 1) be a

* 16



NuN
minimal valid inequality for P (. I 2), and let N be N -maximal. Then for

1 2 1

any ordering of N, the coefficients defined by (3.1) are given by|3
(3102 if a =1 for all i C M

(3.10) a = 0
i otherwise.

Proof! For j c N such that a I for all i E M , condition (cl) of
3 ii

Theorem 3.1 holds and thus az 2. For all other j e N3, condition (c2) holds
.: J

N since N is N -maximal, hence a = 1.11

Note that not only is the definition (3.10) of the coefficients aj

simpler than (3.1), but calculating these coefficients also involves less

work: given some triplet N c N, finding a set N N \ N, such that N is

N -maximal and calculating all the coefficients o( defined by (3.10) require,

* O(mn) work.

Besides requiring that N be N 1-maximal, Corollary 3.7 also assumes that

(2.1) is a minimal valid inequality for P I(At Ytz). This imposes further

conditions on N and Nz , without which the lifting procedure may break down;

namely, that the submatrix A 1 (whose definition depends on N via M ) have no
M Z 0
0

zero rows and no pair of unequal rows with a single 1 in each. An N 1-maximal

set N that satisfies these conditions will be called admissible. If, in

addition, (2.1) is to cut off some vertex of P(A), then A N must contain a
N 3'V0

The following procedure identifies an admissible N -maximal set N for a

given triplet N that contains C as a submatrix. We assume that A has at
13

least two l's in every row.

Step 0. Set N : 0, N3 := N \ N. Choose any j N1, set

M :( fi C M I '(aj : J N ) 2 or a., 1}, M := M \ MO , and go to 1.
0 1 11* 0

Step 1. If N3  0, stop.

If N3 * 0 but M =0, choose j e N3 , set N : N \ {j} and go to 2.

If N 3 0 and M 0 0, choose j e N such that aj 1 for some i e M

-. If no such j exists, stop; otherwise set N := N \ {j}, and go to 2.

* 17



Step 2. If for each k e N, there exists i(k' C M° such that ak 

0, set N := N u (j}, M :-M % C MO a. I, and 'if

MI 0 M M \i C oI a U. Go to 1

*: When the procedure stops, M1 = 0 and N is N -maximal and admissible.

The procedure may stop with N = 0, which is trivially N -maximal and
2 1

admissible but useless. In such a case, another choice of j and/or of the

order in which the elements of N are considered is likely to yield a

*. different set N

Example 3.4. Let A be the matrix

i 011111000010001

I [10111I0100011000
0 110110010001100

111010001000110
111100000100011

For N = {1,2,3}, the (unique) N -maximal (and admissible) set N is

(9,10,14}. Similarly, the N -maximal set N happens to be unique (and

" admissible) for each of the 2 ) triplets of the set {I, ... , 5} (the index

set of the first 5 columns). Table I shows for each N the corresponding

N -maximal admissible set N and the coefficients defined by (3.10) for the

associated inequality (3.9) (which is also the unique inequality (3.2)

corresponding to the pair (N , Nz) )It

V2

4

4

11

.4y.



Table I

* N N
2 j :1 2 3 4 5 6 7 8 9 0 1 12 13 14 15

1, 2, 3 9, 10, 14 1 1 1 2 2 1 1 1 0 0 1 1 1 0 1
1, 2, 4 8, 10 1 1 2 1 2 1 1 0 1 0 1 1 1 1 1
1, 2, 5 8, 9, 13 1 1 2 2 1 1 1 0 0 1 1 1 0 1 1
1, 3,4 7,10 121121011011111
1 , 3, 5 7, 9 1 2 1 1 2 1 0 1 0 1 1 1 1 1 1
1 , 4, 5 7, 8, 12 1 2 2 1 1 1 1 0 1 1 1 0 1 1 1
2, 3, 4 6, 10, 15 2 1 1 1 2 0 1 1 1 0 1 1 1 1 0
2, 3, 5 6,9 211210110111111
2, 4, 5 6, 8 2 1 2 1 1 0 1 0 1 1 1 1 1 1
3, 4, 5 6, 7, 11 2 2 1 1 1 0 0 1 1 1 0 1 1 1 1

4. All the Facets with Coefficients in {0,1,2}

In this section we show that every inequality with coefficients in

(0,1,2} that is facet inducing for P1 (A) can be obtained by the lifting

procedure of Theorem 3.1 from a minimal valid inequality to P (A INz), for
I R

some triplet N N and associated sets N N, R ! M. For this we need

some results of [I].

We have shown in [1] that all minimal inequalities of PI (A) with

coefficients equal to 0, 1 or 2 can be generated by the following procedure

applied to subsets S of M:

* Procedure C

(i) Add the inequalities ai x1 + ... + anx k I for all i E S:

(ii) divide the resulting inequality by ISI - C, where 0.5 < E < 1, and

(iii) round up all coefficients to the nearest integer.

%. We denote by a x a 2 the valid inequality ;o obtained and by C the

class of all such inequalities. Procedure C is a particular variant of

Chvatal's well known, more general procedure (31.

The coefficients of the inequality resulting from procedure C are

* 19



0

(, 2 if a = 1, Vi c S

0 if a = 0, Vi e S

i 1 otherwise.

We denote

J := j e N I ax = k), k 0, 1, 2

M(JO ) {i e M I aij = 0, Vj J}.

For any submatrix AH of A, a pair j, k c H is called a 2-cover of AH if
S S

a + a 1for all i c S. The 2-cover graph of A has a vertex for every
ij ik H

j c H and an edge for every 2-cover of A .s

The following result is from (i] (Corollary 2.5 and part of Theorem 2.6).

SLemma 4.1. The inequality ax x a 2 is minimal if and only if the

I No j

2-cover graph of A has no isolated vertices. If as x a 2 defines aM(J o )
0

facet of PI (A), then every component of the 2-cover graph of A 1 has an* M(J )

odd cycle.

The following is a key result of this section.

Theorem 4.2. Let ax 2 be a facet defining inequality for PI (A), with

I NJ k 4. Then there exists a triplet N c J such that

S('2. 1) E (x. N 2
.11

is a minimal valid inequality for P I (A'YIJo). Further, the inequality ax *

2 can be obtained from (2.1) by the lifting procedure of Theorem 3.1 if and
3

only if the 2-cover graph of A I is connected.
M(J O )

0
Proof. Since axx k 2 is facet defining, it belongs to the class C. Hence

a 2 if a = 1 for all i e M(Jo ), = 0 if a 0 for all i c M(Jo ), andJii 0 j ij

a. = I otherwise.
I

Let G(J ) denote the 2-cover grarh of A . Since ex a 2 is facet
1o )

00
defining, G(J1) has a path with at least three vertices (Lemma 4.1). Choosing

for N any three consecutive vertices of such a path guarantees that the

20



2-cover graph of AN has no isolated vertex: hence that (2.1) is a minimal

N uJ
valid inequality for P (A 1 o).

Now let j i ... , j be any ordering of N := N 1(N u J 0 (where qA1q3 1 0

IN31) such that for k e {l, ... , q}, every Jk E J is adjacent in G(J to3 k '1 1

V. somej N uj , e N U , ki . Such an ordering exists if and only if G(J)

is connected.

Suppose this is the case. For jk e Jz, since a = 1 for all i c M(J0 ,

4 condition (c2) of Theorem 3.1 holds and thus jk gets a coefficient of 2, which

is the value of a For j E J since there exists c N u
1/Ojk k 1 1

J, .. , ) such that a + a > 1 for all i E M(Jo k gets a
r. J ' . k-1 }  su h t at a j 0

coefficient of 1, which again is the value of a.

S Suppose now that G(J ) is not connected. Since N1 is chosen from a path,

V. hence from one component, there exists a component of G(J ) whose vertices do

not contain any element of N and are not adjacent in G(J ) to any element of

N . Let J11 be the vertex set of this component. Then for any ordering

of N , the first element from J , say j , will not form a 2-cover with any of
3 lit

the elements in N u j I k-1 and will therefore be assigned a

coefficient of 0, which is different from the value of a. This implies that

every inequality lifted from (2.1) by the procedure of Theorem 3.1 has a

coefficient different from ox for at least one j E J c J, i.e. cxx ; 2j 11

cannot be obtained in this fashion.II

Theorem 4.2 should not surprise anyone familiar with lifting theory.

N uJAlthough if C2.1) is a minimal valid inequzi ,ty for P (A 1 o), then every

S minimal valid inequality for P (A) which has coefficients identical to those

of (2.1) for j c N U J can be obtained from (2.1) by lifting [2, 71, the,.%..1 0

kind of lifting required may not be sequential, but simultaneous. What isp.:

S specific to the class of inequalities discussed in this paper, however, is

that in their case sequential lifting is sufficient for generating all of
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them, provided the procedure is extended to encompass restrictions of the row

set M of A to some subset of M, in the vein of Corollary 3.6. To show now

this can be done, we need another result of [1].

Given an inequality aS x ; 2 in class C, a subset T c M(J ) is called

T=S
C-equivalent to S, if a a , i.e. T gives rise to the same inequality as S.

T is a minimal C-equivalent subset of M(J ) if no proper subset of T is

C-equivalent to M(Jo).

For k k 3, we denote by C k- 1 the complement of a permutation matrix, i.e.
k

a square 0-1 matrix of order k, with exactly one 0 in every row and column.

Lemma 4.3. (Theorem 3. 1 of [1]) For every minimal C-equivalent subset T

of M(J ), A i contains a submatrix C-
0 T t

* Let ax k 2 be a minimal valid inequality for P (A), and let T be a

minimal C-equivalent subset of M(Jo). Let K be the column index set of a

C t

contained in A1i, and define L := K u J , R := T u M t M(J )).

It is easy to see that any triplet N c K gives rise to a submatrix AN 1
1 T

that has at least two l's in every row and contain- a C z. To identify the3

latter, just take the three rows which contain a 0. An important property of

A J1 is the following.
T

Lemma 4.4. The 2-cover graph of A J1 is connected.
T

Proof. Every pair of columns of Ct - 1 is a 2-cover of A11, hence the
t T

column set K of C - 1 induces a clique in the 2-cover graph G(J ) of AJ 1. On
t 1 T

Jt he other hand, for every column j E J \ K of AT i, there exists some column
IT

k(j) c K whose unique 0 occurs in a row i with a. 1, i.e. such that j and*ij

k(j) form a 2-cover A I

We are now ready to state the main result of this section.

Theorem 4.5. Let IAl a 4 and let ax 2 2 be a minimal valid inequality

for P (A). Then there exists a triplet N c N and a subset T S M such that
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is a minimal valid inequality for P (A1i UNz), where N -T and S T u
I1 2 0

"M 14 J',. Further, (x.v ; 2 can be obtained from r2. I) by the liftino
0

procedure of Theorem 3. 1, with M(J) replaced by

s(J 0 ,) =;i S a 0, Vj N uJ
0i 2 0

in the conditions (cl) and (c2) defining the coefficients a.

Proof. Since ax - 2 is minimal, it belongs to the class C. From

Lemmas 4.3 and 4.4, there exists a minimal C-equivalent subset T of M(J ",

such that the 2-cover graph of A i is connected. Therefore there exists a
T

triplet N c J such that (2.1) is a minimal valid inequality for P (A5
N 2' )

whereN : J0 and S := T u (M \M(J)). Since the 2-cover graph of A i is

connected, from Theorem 4.2 ocx 2 can be obtained by applying to (2.1) the

lifting procedure of Theorem 3.1, with M(0) (= MO) replaced by S(0) = T and,

more generally, M(J t) replaced by S(3 ) {ki ES ja.. 0, Vj E N u J
0 2 0

Example 4.1. Consider the matrix

110001011
01101 10 10

101010110
010010101

A 0 10 001101

010001111
*5~1101011011

010010110
1 01101 011

010100100J

and the inequality

4.1) x + x + x + x + x + x + x + x z 2
2 3 5 6 7 6 9

0i We have Jo (4}, Jz 0, 3' J (1,2,3,5,6,7,8,9}, and M(J0) = 1, ..... 8).. W,:

0 0 0 01

"' ~choose NI  (1,2,3); then xI  + x2 + x > 2 is a minimal valid inequality for

0, 11

0' 1u (1 04) 01

5'PI(AN i a) P P(A( ... 4), which is also facet defining. Since the 2-cover

1 01

graph G(.J I) of A) shown in Figure 4.1, is disconnected, none of the
0
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lifted inequaLities is -4.1. The coefficients of these inequalities are

shown in Tnble 2.

2 5

'76

7

.4- 9
8

Figure 4.1

Table 2

Coefficients of lifted inequalities

JN 1 2 3 4 5 6 7 8 9 Ordering of N3

1 111 0 0 2 1 1 2 5, 6, 7, 8, 9
2 1 1 1 0 2 0 2 1 1 6, 5, 7, 8, 9
3 1 1 1 0 1 2 0 2 1 7, 5, 6, 8, 9
4 1 1 1 0 1 1 2 0 2 8, 5, 6, 7, 9
5 1 1 1 0 2 1 1 2 0 j,5, 6, 7, 8

The orderings of N considered are those in which the elements take turns to
* 3

be chosen first, while the remaining elements keep their natural order. No

other orderings yield different inequalities. Each of the 5 inequalities is

facet defining for P (A), as is inequality (4.1).
, C 3

Now consider the row set T = {3,5,6,7}, which contains a C with columns
4

indexed by K = {3,6,7,8}. The 2-cover graph of AJ i is shown in Figure 2.
T

The inequality x + x + x a 2 is minimal for P (ANIU Z, where
1 I S

S 13,5,6,7,9,10}. Applying the lifting procedure with M(O) replaced by

24
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T fl(3,6,7,8}, and any ordering of N in which 5 does not precede all of 6, 7,3

8, 9, yields the inequality (4.1).11

"2 3

)5 5N6

Figure 4.2

. .Note that if for the inequality ax z 2 there exists a triplet N 1 c

m. such that J 0is N -maximal and (2.1) is a minimal valid inequality for

P(A N I Wo), then in the 2-cover graph of A j', every vertex of J \ N is

4PI

I )I 1 1

i "connected to some vertex of N 1, and ax 2t 29 can be obtained by the simplified

,.'elifting procedure of Corollary 3.7.

References

$F [I]J E. Balas and S. M. Ng, "On the Set Covering Polytope: I. All the Facets
j~j%-with Coefficients in {0,1,2}." Management Science Research Report
i >.No. MSSR-522. Graduate School of Industrial Administration, Carnegie
•Mellon University, Pittsburgh, PA 15213. April, 1985. To appear in
.,. = ffa hematfi cal Programming.

,-[2] E. Balas and E. Zemel, "Lifting and Complementing Yields All the Facets
,..of Positive Zero-One Programming Polytopes." R. W. Cottle, M. I.

.Kelmanson and B. Korte (editors), Mathematical Programming, Elsevier,
•1984, 13-24. Circulated originally as MSRR No.374, Carnegie Mellon
- University, 1975.

(N [3 ] V. Chvatal, "Edmonds Polytopes and a Hierarchy of Comb inatorial
Problems." Discrete Mathematics, 4, 1.973, 305-337.

•[41 G. L. Nemhauser and L. E. Trotter, 'Properties of Vertex Packing and
, •Independence Systems Polyhedra. "  Mathematical Programwing, 6, 1974,

48-61.

25



51 M. W. Padberg, "On the Facial Structure of Set Packing Polyhedra.'
MVathematical Programming, 5, 1973, 199-215.

[6'1 U. N. Peled, "Properties of Facets of Binary Polytopes." Annals of
Discrete Mathematics, 1, 1975, 435-455.

('7 E. Zemel, "Lifting the Facets of 0-1 Polytopes." Afathematical
Prog'ramming, 15, 1978, 268-271.

42

lu l)
H 1bm &


